Lecture Notes 2-4: The Precise Definition of the Limit (DAY 2)

Review: The Precise Definition of the Limit:

We say $\lim _{x \rightarrow a} f(x)=L$, if for every number $\epsilon>0$, there exists a number $\delta>0$ such that

$$
\text { if } 0<|x-a|<\delta \text {, then }|f(x)-L|<\epsilon
$$

$$
=
$$

Recall that we used this definition to show that $\lim _{x \rightarrow \frac{2}{a}} 3 x+1=7$.

Algebraically: Given $\varepsilon>0$, we picked $\delta=\varepsilon / 3$. If $|x-2|<\frac{\varepsilon}{3}$, then

$$
\begin{aligned}
&\left(-\frac{\varepsilon}{3}\right.\left.<x-2<\frac{\varepsilon}{3}\right) \cdot 3 \\
&-\varepsilon\left.<3 x-6<\varepsilon \quad \begin{array}{rl}
3 x-6 & =3 x+1-7 \\
-\varepsilon & <y-7
\end{array}\right)=y-7 \\
& \quad|y-7|<\varepsilon, \text { which is what we } \\
& \text { wanted to show. }
\end{aligned}
$$

Practice Problems:

1. Let $f(x)=x^{2}$, graphed below.

(a) Find a number δ such that if $|x-2|<\delta$, then $\left|x^{2}-4\right|<1$. Use the graph to show that your answer is correct.
Identify
my target $-1<x^{2}-4<1 \Leftrightarrow 3<x^{2}<5$
Find
$\begin{aligned} & \text { Find } \\ & \text { endpoints } \\ & \text { on } x \text {-axis }\end{aligned} y=3, x=\sqrt{3} \approx 1.73 ; y=5, x=\sqrt{5} \approx 2.24$
$2-x=0.27$
$x-2=24$
C smaller
Pick $\delta=0.24$.
Note, any δ so that $0<\delta \leq 0.24$ will work!

(b) Find a number δ such that if $|x-2|<\delta$, then $\left|x^{2}-4\right|<\frac{1}{5}$. Use the graph to show that your answer is correct.
when $y=4.2, x=\sqrt{4.2} \approx 2.0494,0.0494 \approx 2-\sqrt{4.2}$
when $y=3.8, x=\sqrt{3.8} \approx 1.949,0.051 \approx 2-\sqrt{3.8}$
Pick $\delta=0.0494$
(c) How is finding δ different if the function, $f(x)$, is not linear?
The interval around a isn't symmetric. To find δ, you have to find which side is smaller.
2. A machinist is required to manufacture a metal cube with a volume of $8000 \mathrm{~cm}^{3}$.
(a) What side length produces such a cube?

(b) If the machinist is allowed an error tolerance of $\pm 10 \mathrm{~cm}^{3}$ in the volume of the cube, how close to the ideal side length in part (a) must the machinist control the radius?
Our volume must be between $7990 \mathrm{~cm}^{3}$ and $8010 \mathrm{~cm}^{3}$.
So the side length must be between: 19.9917 cm and 20.0083 cm .
The difference of each from 20 is: 0.0083 cm and 0.0083 cm .
Answer: The machinist would need to be within 0.0083 of a centimeter of the ideal length, 20 cm .
(c) In terms of the $\epsilon-\delta$ definition of $\lim _{x \rightarrow a} f(x)=L$, what is:
i. x ? length
iii. a ? 20 cm
v. ϵ ? $10 \mathrm{~cm}^{3}$
ii. $f(x)$? Volume
iv. L ? $8000 \mathrm{~cm}^{3}$
vi. $\delta ? 0.0083 \mathrm{~cm}$
