LECTURE NOTES 2-4: THE PRECISE DEFINITION OF THE LIMIT (DAY 2)

REVIEW: THE PRECISE DEFINITION OF THE LIMIT:

We say $\lim_{x \to a} f(x) = L$, if for *every* number $\epsilon > 0$, there exists a number $\delta > 0$ such that

if $0 < |x - a| < \delta$, then $|f(x) - L| < \epsilon$.

Recall that we used this definition to show that $\lim_{x\to 2} 3x + 1 = 7$.

PRACTICE PROBLEMS:

1. Let $f(x) = x^2$, graphed below.

(b) Find a number δ such that if $|x - 2| < \delta$, then $|x^2 - 4| < \frac{1}{5}$. Use the graph to show that your answer is correct.

when y=4.2, x= √4.2 ≈2.0494, 0.0494≈2-14.2 when y=3.8, x=√3.8 ≈ 1.949, 0.05/≈2-13.8 Pick S=0.0494

(c) How is finding δ different if the function, f(x), is not linear?

The interval around a isn't symmetric. To find S, you have to find which side is Smaller.

- 2. A machinist is required to manufacture a metal cube with a volume of $8000 \ cm^3$.
 - (a) What side length produces such a cube?

20 cm

(b) If the machinist is allowed an error tolerance of $\pm 10 \, cm^3$ in the volume of the cube, how close to the ideal side length in part (a) must the machinist control the radius?

Our volume must be between 7990 cm³ and 8010 cm³. So the side length must be between: 19,9917 cm and 20.0083 cm. The difference of each from 20 is: 0.0083 cm and 0.0083 cm.

Answer: The machinist would need to be within 0.0083 of a centimeter of the ideal length, 20 cm.

(c) In terms of the
$$\epsilon$$
- δ definition of $\lim_{x \to a} f(x) = L$, what is:
i. x? length iii. a? 20 cm v. ϵ ? 10 cm
ii. $f(x)$? Volume iv. L? 8000 cm³ vi. δ ? 0.0083 cm